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Introducing the Arm Machine Learning (ML) Processor

Optimized ground-up architecture for machine learning processi
Massive efficiency uplift from CPUs, GPUs and DSP
Open-source stack enables easy deploymen

Architecture scales from loT to server and automoti

First design targets mobile with derivatives for additional segmen

2 2 © 2018 Arm Limited q rm



Arm’s ML Processor

* 16 Compute Engines

e ~ 4 TOP/s of convolution throughput (at
1 GHz)

e Targeting >3 TOP/W in 7nm and
~2.5mm?

e 8-bit quantized integer support
 1MB of SRAM

e Support for Android NNAPI and
ARMNN

* Optimized for CNNs, RNN support
* To be released 2018
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4 Key Ingredients for a Machine Learning Processor
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e Static scheduling

e Efficient convolutions

* Bandwidth reduction mechanisms Weight Decoder

* Programmability/flexibility H Agine
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4 Key ingredients for a Machine Learning Processor
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Arm’s ML processor: Static Scheduling

* CNNs are statically analyzable

ML Processor

DMA
Engine

Weight Decoder N mm
me MACEngine

* Compiler takes a NN and maps it
to a command stream consumed
by the ML processor

@ Command Stream

DMA X
I Programmable
R WAIT for DMA (X,Y)
Conv X, Y
etc
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Arm’s ML processor: Static Scheduling

No caches

Simplified flow control ML Processor

Simplified hardware (but requires careful DMA
Engine

co-design with the compiler)
Weight Decoder N mm
me MACEngine

Relatively predictable performance

@ Command Stream

DMA X
I Programmable
R WAIT for DMA (X,Y)
Conv X, Y
etc
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4 Key ingredients for a Machine Learning Processor
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Convolutions

Output Feature Maps (OFMs) are
interleaved across the compute

engines (each CE working on a
different OFM)

* The weights for OFM-X will be

9

resident in the SRAM of the CE which
is processing OFM-X

Input Feature Maps (IFMs) are
interleaved across all SRAM banks
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Convolutions

Machine Learning Processor
* MAC Engine capable of eight 16-wide | NS

dot products (8b) o
- MAC Engine =2 * 8 * 16 = 256 ops/cycle ¢
. 16 MAC Engines. = 16 * 256 = 4096 ops/cycle i I
. 4.1 TOPs @ 1 GHz i
- 32b accumulators IFMs Input Activation Read
o . Compressed
* The utilization of the MAC engine Weights Weight Decoder
depends on conv parameters

SRAM

* Datapath gating for zeros (~50% OFMs
power reduction)

Programmable Layer Engine
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Convolutions

Activations from Broadcast

other Compute Engines =, JNEEWI{S

IFMs Input Activation Read

Compressed
Weights Weight Decoder

SRAM :
MAC Engine

OFMs

Programmable Layer Engine
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16 Wide 16 Wide | | 16 Wide | | 16 Wide
DP DP DP DP
16 Wide 16 Wide | | 16 Wide | | 16 Wide
DP DP DP DP

Each 7”16 Wide DP” unit performs

MAC Engine

an 8b, 16 deep dot product

operation
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Convolutions

Activations from Broadcast 16 Wide || 16 Wide | | 16 Wide | | 16 Wide
other Compute Engines -, IRNEATe]gS DP DP DP DP
| 16 Wide || 16 Wide || 16 Wide [ 16 Wide
Compressed

Weights Weight Decoder

SRAM

MAC Engine

MAC Engine
OFMs
Programmable Layer Engine

A tensor of activations is
assembled in the broadcast

network and sent to all MAC
engines
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Convolutions

Activations from Broadcast 16 Wide | 16 Wide | | 16 Wide | | 16 Wide
other Compute Engines -, JR\EIAWeIIS | DP DP DP DP
' 16 Wide || 16 Wide || 16 Wide || 16 Wide
Compressed
Weights Weight Decoder

SRAM

MAC Engine

MAC Engine

OFMs

Programmable Layer Engine

The weights for a specific OFM are resident in

the local SRAM slice paired with the MAC
Engine.

The weights are read, decompressed and sent to
the MAC Engine arm
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Convolutions

Activations from Broadcast 16 Wide || 16 Wide | { 16 Wide | | 16 Wide
other Compute Engines -, IRNEATe]gS | DP DPp || DP || DP
' 16 Wide | { 16 Wide | { 16 Wide || 16 Wide
18 e|g Decoae
= MAC Engine
o

When the final output activation values have
been communicated, the 32b values are
scaled back to 8b and sent to the
Programmable Layer Engine
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Convolutions

 POP IP for the MAC Engines, Tuned

for 16nm and 7nm
 Providing 40% area reduction and 10-20%
power improvements

Artisan

Core-Optimized
Physical IP

POP"

arm

Certified
Benchmarking
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4 Key ingredients for a Machine Learning Processor
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Importance of Weight and Feature Map Compression

Power Breakdown

* DRAM power can be nearly as high as the
processor power itself

* ML processor supports
- Weight Compression
- Activation Compression
- Tiling

m Weight DDR Power m Activation DDR Power = ML Processor Power
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Frequency

ML Processor Feature Map Compression

ML processor saves average of 3x with lossless compression

High zero count indicates good
compression behavior

500,000
450,000 Many maps have repeating non-
400,000 zeros, again aiding compression
350,000 . .
Standard padding behaviors for
300,000 .
tensors introduce more zeros
250,000 e N ettt L 64 unique nz
~—= 56 unique nz
200,000 ==~ 48 unique nz
= a0 uni e>
150,000 = unique nz qa\\)
O
100,000 T o e il A%
50,000 . ﬂﬂ”?’“ﬂ,’? ................... 1 L Lt L g g L i | & = 16 unique nz e(\O
l . _‘ __________ A _ ‘_ _ ' o o ) g iy T it gt gt ighighighighgiiglgiara | 00 - - 8 unique nz . 0\\)
N N N e ¥ S R RV R S R R ~ 0 unique nz \)(\\
0 zero 8 zeros 16 zeros 24 zeros 32 zeros 40 zeros 48 zeros 56 zeros 64 zeros

Count of zeros per 8x8 block

 Compression per 8x8 block
* 3.3x compression for Inception V3
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Weight Compression and Pruning

*  Weight bandwidth dominates later layers of networks
 Pruning during the training phase increases the
number of zeros

» Clustering can “snap” the remaining non-zero weights
to a smaller set of possible NZ values

- Models are compressed offline during compilation

phase to our format which exploits both clustering and

pruning

- Weights stay compressed until read from internal
SRAM
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Inception v4
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Y . &  Pruning N ‘ N “' .
synapses .
Pruning > ‘ ‘
“'u ‘ neurons ‘_.
Han et al
Learning both weights and Connections for Efficient Neural Networks
October 2015
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Tiling

* Compiler-based scheduling further reduces
bandwidth

- Scheduling tuned to keep working set in SRAM

- Tiled or wide scheduling avoids trips to DRAM

- Multiple outputs calculated in parallel from same input

- Intermediate stages are pipelined between MAC and PLE

- Possible because of static scheduling (compile time)
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Filter concat

3X3 Conv 3X3 Conv
(96) (96)

Avg Pooling

Szegedy et al
Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning
February 2016
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4 Key ingredients for a Machine Learning Processor
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Programmability/flexibility
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Programmable Layer Engine (PLE)

Machine Learning Processor

DMA § Control Broadcast * State of the art in neural networks is still
Engine Unit Network evolving

t

|
* Programmable Layer Engine

N Input Activation Read
 Provides design future-proofing

Weisht Decoder - Benefits from existing Arm technology

* No hardware assumptions on operator
ordering

MAC Engine
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Programmable Layer Engine (PLE), cont.

IFMS Input Activation Read

Compressed
Weights Weight Decoder

PLE SRAM
Controller

SRAM )
MAC Engine

OFMS )
Programmable Layer Engine

Compute Engine 1

* We have extended ARM CPU technology with
vector and NN extensions targeted for non-
convolution operators (pooling, relu, etc)
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Programmable Layer Engine (PLE), cont.

Interrupt

* The results of MAC computation are sent to Engine
the PLE
- The PLE register file is populated directly
) . Vector
- Interrupts are sent to activate PLE processing PLE SRAM Register

Controller File

- The majority of operators are performed by a 16-lane
vector engine — as they often pool or reduce

e Results are emitted back to SRAM

- A micro-DMA unit writes data out Programmable
- They are then fetched back into CE for subsequent Layer Engine
processing
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Scalability

Machine Learning Processor

* Multiple ways to scale -
* Number of Compute Engines Engine
- MAC Engine throughput
- Number of ML processors

Control Broadcast
Unit Network
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Arm’s ML processor: Summary

26

16 Compute Engines

~ 4 TOP/s of convolution throughput (at
1 GHz)

Targeting > 3 TOP/W in 7nm and
~2.5mm?

8-bit quantized integer support
1MB of SRAM

Support for Android NNAPI and
ARMNN

To be released 2018
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